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1. Introduction

One efficient way of generating a sigma model on a non trivial manifold X is the gauging

of a sigma model on a simpler manifolds M carrying the action of a Lie group G such that

X ≃ M/G. The target space of the gauged model turns out to be precisely X. In many

interesting cases, a symplectic structure on M and a moment map for the G-action can be

defined and this construction is a particular case of a general procedure called Hamiltonian

reduction [1].

The usefulness of gauging sigma models was first recognized by Witten in [2], where the

gauged linear sigma-model with target X = C
n and group G = U(1) was used to study non-

gauged sigma-models into weighted projective spaces and Calabi-Yau hypersurfaces thereof.

Later, in [3], applying the same procedure, Witten employed a gauged linear sigma-model

with target X = C
kn and group G = U(k) in a study of the quantum cohomology of

Grassmannians.

The study of gauged sigma models, however, was initiated long before Witten’s work.

Developing on the results of Gates, Hull and Roček in [4], the gauging of (2,2) supersymmet-

ric sigma models on biHermitian manifolds was studied originally by Hull, Papadopoulos

and Spence in [5]. Their analysis was however limited to the subclass of almost product

structure target spaces because of the lack of an off-shell (2,2) supersymmetric action in

the general case at that time. After the realization that biHermitian geometry is natu-

rally framed in generalized complex and Kaehler geometry by Hitchin and Gualtieri [6, 7],

– 1 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
8

(2,2) supersymmetric sigma models have been fruitfully formulated in this new powerful

geometric language. In this way, the off-shell (2,2) supersymmetric sigma model action on

general biHermitian manifolds was recently obtained in ref. [8]. This has led the authors

of ref. [9] to extend the analysis of [5] to general biHermitian target spaces. In [10], the

same analysis has been carried out in the on-shell formalism.

(2,2) supersymmetric sigma models are rather complicated quantum field theories and,

so, they are difficult to study. In 1988, Witten showed that a (2,2) supersymmetric sigma

model on a Calabi-Yau manifold (a particular case of biHermitian manifold) could be

twisted in two different ways, to give the so called A and B topological sigma models [11,

12]. Unlike the original untwisted sigma model, the topological models are soluble: the

calculation of observables can be reduced to classical problems of geometry. Topological

sigma models on general biHermitian manifolds have been worked out in recent years to

a various degree of depth in [13 – 17]. However, only a small number of papers has been

devoted to the study of gauged topological sigma models [18 – 20] and these are concerned

with the Calabi-Yau case only. The problem arises of constructing gauged topological

sigma models with more general biHermitian target space geometries.

In the last few years, many attempts have been made to construct topological sigma

models with generalized complex and Kaehler target manifolds [21 – 26]. In [23 – 25], the

sigma models were worked out by employing the Batalin-Vilkovisky (BV) quantization

algorithm [27, 28] in the Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) formula-

tion [29]. To date, this seems to be the most promising approach to the solution of the

problem, though, as shown in [30], the implementation of gauge fixing remains a major

technical obstacle even in the simplest cases.

In ref. [31], we showed how Hamiltonian symmetry reduction could be incorporated

in the sigma model on generalized complex manifolds worked out in refs. [23, 24] (the so-

called Hitchin model). This was achieved by coupling the sigma model to a kind of ghostly

Poisson sigma model called Weil model. To illustrate our procedure, we applied it also to

the standard Poisson sigma model [32, 33] in the AKSZ formulation of refs. [34, 35].

As it turns out, coupling to the Weil model amounts to a gauging procedure. In [31],

the background principal bundle was taken to be trivial. In this paper we show that this

restriction is not in any way essential. With appropriate modifications, the Weil sigma

model can be formulated and the coupling of the Weil model to the relevant sigma model

can be implemented for a general principal bundle. We restrict ourselves to the Poisson

sigma model for its simplicity and its independent interest. Our construction results in a

gauged Poisson sigma model, which we call Poisson-Weil sigma model.

It is instructive to write down the classical action of the Poisson-Weil sigma model

to see its relation to the conventional formulation of standard Poisson sigma model. The

target space is a Poisson manifold M with Poisson structure P ab carrying a Hamiltonian

action of a Lie group G with fundamental vector field ui and moment map µi and leaving

P ab invariant. The base space Σ supports a principal G-bundle Q. The fields are an

embedding field xa, a cotangent space valued 1-form field ηa, as in the ordinary Poisson

model, and a gauge field Ai, a coadjoint scalar field bi and an adjoint scalar field B+i. The
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classical action is

S =

∫

Σ

[

− biB
+i − biFA

i − µi(x)B
+i + ηaDAx

a +
1

2
P ab(x)ηaηb

]

, (1.1)

where

FA
i = dAi +

1

2
f i

jkA
jAk, (1.2)

DAx
a = dxa − ui

a(x)Ai (1.3)

are the gauge curvature of Ai and the gauge covariant derivative of xa, respectively. The

Poisson-Weil sigma model enjoys a large symmetry which extends that of the ordinary

Poisson sigma model by the gauge symmetry. The symmetry closes only on shell, as in the

ordinary case. This disease is cured by using a suitable BV formulation generalizing that

of [34, 35].

The Weil and Poisson-Weil sigma models have a very rich algebraic and geometric

structure. The BV cohomology of the Weil model is related to the basic cohomology of the

Weil algebra W (g) of the Lie algebra g of G (in turn isomorphic to the de Rham cohomology

of the classifying space BG of the group G). The BV cohomology of the Poisson-Weil model

is related to the Hamiltonian basic and equivariant Poisson cohomology of the Poisson

manifold. To some extent, this is expected on general grounds and the fact that this is

indeed so shows the soundness of the models.

As an application, we work out the gauge fixing of the pure Weil sigma model and

of the Poisson-Weil sigma model in the BV framework. In the first case, we obtain the

2-dimensional version of Donaldson-Witten theory, a topological field theory describing

the moduli space of flat connections on a closed surface [36, 37]. In the second case, we

recover the gauged topological sigma model worked out by Baptista in refs. [18 – 20], which

describes the moduli space of solutions of the so-called vortex equations and is a gauged

version of Witten’s A-model [11, 12].

The plan of the paper is as follows. In section 2, we present a generalization of the

Weil sigma model originally worked out in ref. [31], which is valid for a general principal G-

bundle on the sigma model world sheet and is suitable for the constructions of the following

sections. In section 3, we work out a gauge fixing of the Weil model and show that it

yields the 2-dimensional version of Donaldson-Witten theory. In section 4, we formulate

a generalization of the Poisson-Weil sigma model worked out in ref. [31] and show that it

constitutes a gauging of the ordinary Poisson model. In section 5, we carry out the gauge

fixing of the Poisson-Weil sigma model and show that it reproduces the gauged topological

sigma model by Baptista. In section 6, we outline briefly potential generalizations of the

constructions of this paper to the case where G is a Poisson-Lie group. Finally, in the

appendices, we conveniently collect various relations and identities which may help the

reader willing to check the details of our analysis.
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2. The Weil sigma model

In this section, we present a generalization of the Weil sigma model originally worked out

in ref. [31], which is suitable for our construction. Though the covariance of the superfields

of the version of Weil sigma model studied here is more general, its BV formulation is

essentially the same as that of [31]. The reader is therefore invited to read that paper for

more details on the BV formalism used and the derivation of the classical master equation

and BV variations below.

We consider a geometrical setting consisting of the following elements.

1. A closed surface Σ.

2. A compact connected Lie group G with Lie algebra g.

3. A principal G-bundle Q over Σ.

With Σ there is associated the degree shifted tangent bundle T [1]Σ. Let a1 : T [1]Σ → Σ be

the associated bundle projection. Then, we can construct the pull-back principal bundle

a1
∗Q over T [1]Σ. Concretely, a1

∗Q can be described in the language of 1 cocycles as follows.

Let {UA} be an open covering of Σ such that Q|UA
≃ UA ×G. Let {gAB} be the G-valued

1-cocycle representing Q with respect to the covering {UA}. Define gAB = gAB ◦a1. Then,

{gAB} is the G-valued 1-cocycle representing a1
∗Q with respect to the covering {a1

−1(UA)}

of T [1]Σ.

A generalized connection c of a1
∗Q is defined as follows. c is given locally on each

open set a1
−1(UA) of T [1]Σ as a function cA ∈ Γ(a1

−1(UA), g[1]) with cA = Ad gAB cB −

gABd(gAB
−1) on a1

−1(UA)∩a1
−1(UB) 6= ∅, where d is the homological vector field of T [1]Σ

corresponding to the de Rham differential d of Σ. (The choice of the sign of the affine term is

conventional.) We denote by Conn(T [1]Σ, a1
∗Q) the affine space of generalized connections

of a1
∗Q.

The adjoint and coadjoint bundles Ad a1
∗Q, Ad∨a1

∗Q are defined as Ad a1
∗Q =

a1
∗Q×Gg and Ad∨a1

∗Q = a1
∗Q×Gg∨. A section s ∈ Γ(T [1]Σ,Ad a1

∗Q) is given locally on

each open set a1
−1(UA) of T [1]Σ as a function sA ∈ Γ(a1

−1(UA), g) with sA = Ad gAB sB

on a1
−1(UA) ∩ a1

−1(UB) 6= ∅ and similarly for Ad∨a1
∗Q. Degree shifting is achieved by

replacing g by g[n] above and similarly for g∨.

The field content of the Weil sigma model is the following.

1. A section b ∈ Γ(T [1]Σ,Ad∨a1
∗Q[0]).

2. A section B ∈ Γ(T [1]Σ,Ad∨a1
∗Q[−1]).

3. A generalized connection c ∈ Conn(T [1]Σ, a1
∗Q).

4. A section C ∈ Γ(T [1]Σ,Ad a1
∗Q[2]).1

1In [31] B C were denoted by B, Γ, respectively.
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The BV odd symplectic form is given by

ΩW =

∫

T [1]Σ
̺
[

δbiδc
i + δBiδC

i
]

. (2.1)

The action of the Weil sigma model is given by

SW =

∫

T [1]Σ
̺

[

bi

(

dci −
1

2
f i

jkc
jck + Ci

)

− Bi

(

dCi − f i
jkc

jCk
)

]

. (2.2)

SW satisfies the classical BV master equation

(SW , SW )W = 0, (2.3)

where (·, ·)W are the BV antibrackets associated with the BV form ΩW [31].

The BV variations of the Weil sigma model fields are

δW bi = dbi + fk
jic

jbk + fk
jiC

jBk, (2.4a)

δW ci = dci −
1

2
f i

jkc
jck + Ci, (2.4b)

δW Bi = dBi + fk
jic

jBk − bi, (2.4c)

δW Ci = dCi − f i
jkc

jCk, (2.4d)

where δW = (SW , ·)W [31].

From (2.3), it follows that the Weil sigma model action is BV invariant

δWSW = 0. (2.5)

Again from (2.3), it follows that the Weil sigma model BV variation operator δW is nilpotent

δW
2 = 0, (2.6)

as can be directly verified from (2.4).

Relation to the Weil algebra complex. The Weil sigma model owes its name to its

relation to the Weil algebra complex of g, as we shall review next (see for instance [38, 39]

for background material). To any Lie algebra g, there is canonically associated the Weil

algebra W (g) = ∧∗g∨[1]⊗∨∗g∨[2], the tensor product of the antisymmetric and symmetric

algebras of g∨ in degree 1 and 2, respectively. The natural g-valued generators ω, Ω of

W (g) carry degrees 1, 2, respectively. The Weil operator dW is the degree +1 derivation

on W (g) defined by

dWωi = Ωi −
1

2
f i

jkω
jωk, (2.7a)

dW Ωi = −f i
jkω

jΩk. (2.7b)

It is simple to check that dW is nilpotent

dW
2 = 0. (2.8)
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Therefore, (W (g), dW ) is a differential complex. Its cohomology H∗(W (g), dW ) is actually

trivial. However, it is possible to define also a g basic cohomology H∗

basic(W (g), dW ), which

turns out to be non trivial, as follows. One defines degree −1 graded derivations ii and

degree 0 graded derivations li on W (g) by

iiω
j = δi

j , (2.9a)

iiΩ
j = 0, (2.9b)

liω
j = −f j

ikω
k, (2.9c)

liΩ
j = −f j

ikΩ
k. (2.9d)

The derivations ii, li and dW have the same formal properties as the contraction iv, Lie

derivative lv, with v a vector field, and de Rham differential dX on the graded algebra

differential forms Ω∗(X) on a manifold X. The basic subalgebra W (g)basic of W (g) consists

of those elements w ∈W (g) such that

iiw = 0, (2.10a)

liw = 0. (2.10b)

(W (g)basic, dW ) is a subcomplex of the differential complex (W (g), dW ). Its cohomology

H∗(W (g)basic, dW ) is by definition the basic cohomology H∗

basic(W (g), dW ). It can be shown

that W (g)basic = Bg = ∨∗g∨[2]G is the G-invariant subalgebra of the symmetric algebra

∨∗g∨[2] ⊂ W (g) of g∨ in degree 2. Actually, one has H∗

basic(W (g), dW ) ≃ Bg, since the

restriction of dW to Bg vanishes.2

As shown in ref. [31], when Q is trivial, the superfields c, C describe the embedding

of T [1]Σ into the Weil algebra W (g) of the Lie algebra g. For any point z ∈ T [1]Σ,

the evaluation map ez : Γ(T [1]Σ,W (g)) 7→ W (g) is a chain map of the chain complexes

(Γ(T [1]Σ,W (g)), δ′W ), (W (g), dW ), where δ′W is the nilpotent mod d reduction of δW
obtained by setting dci = 0, dCi = 0 in (2.4b), (2.4d). When Q is not trivial, c, C become

sections of a vector bundle of Weil algebras. The above geometrical picture still holds but

only locally on T [1]Σ. This justifies the name given to the sigma model described here.

We shall not attempt an exhaustive study of the BV cohomology of the Weil sigma

model. We shall only stress that it contains a sector isomorphic to the Weil algebra basic

cohomology H∗

basic(W (g), dW ). If one wished to construct a superfield out of a generic

element w ∈W (g), one would try with something like

w =
∑

p,q

1

p!q!
wi1...ipj1...iqc

i1 · · · cipCj1 · · ·Cjq . (2.11)

w, however, is only locally defined, since the superfields ci, Ci are. To make w globally

defined, two requirements must be fulfilled. First, the right hand side of (2.11) must contain

no occurrences of ci, since this is a generalized connection and, so, it is defined locally up

2As is well known, the importance of the Weil algebra basic cohomology stems from its being isomorphic

to the cohomology of the classifying space BG of G.
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to a local gauge transformation. Second the Weil algebra element w must be G-invariant.

These requirements amount to requiring w ∈ Bg. So, we are led to consider superfields

w =
∑

q

1

q!
wj1...iqC

j1 · · ·Cjq , (2.12)

with w ∈ Bg. By a simple calculation, one finds

δW w = dw. (2.13)

Hence, w is a cocycle of the mod d BV cohomology. Since H∗

basic(W (g), dW ) ≃ Bg, the

mapping w 7→ w defines an isomorphism of H∗

basic(W (g), dW ) and a certain sector of the

mod d BV cohomology.

In field theory, one is interested in the BV cohomology rather than the mod d BV co-

homology, since the BV cocycles are the observables of the field theory. For any supercycle

C of T [1]Σ

w(C) =

∮

C

w (2.14)

is a cocycle of the BV cohomology

δW w(C) = 0. (2.15)

For a fixed homology class [C] of T [1]Σ, the mapping w 7→ w(C) defines a generally non

injective homomorphism of H∗

basic(W (g), dW ) into a certain sector of the BV cohomology.

The Weil sigma model in components. One can expand the Weil sigma model fields

in homogeneous components

bi(z) = bi(z) + ϑαA+
αi(z) +

1

2
ϑαϑβc+αβi(z), (2.16a)

ci(z) = ci(z) − ϑαAα
i(z) −

1

2
ϑαϑβb+αβ

i(z), (2.16b)

Bi(z) = Bi(z) + ϑαψ+
αi(z) +

1

2
ϑαϑβC+

αβi(z), (2.16c)

Ci(z) = Ci(z) − ϑαψα
i(z) −

1

2
ϑαϑβB+

αβ
i(z), (2.16d)

where z ≃ (z, ϑ), zα, ϑα being base and fiber coordinates of T [1]Σ. The ghost number of

the various component fields is given by the degree of the superfield they appear in minus

the number of ϑα they are multiplied by, as deg ϑα = 1. All component fields belong to

either Ω∗(Σ,AdQ[n]) or Ω∗(Σ,Ad∨Q[n]) for some n except for A which is an ordinary

connection of Q. The choice of the signs of the component fields is conventional.

The action and the BV variations of the Weil sigma model (cf. eqs. (2.2), (2.4)) can

be written down explicitly in terms of the components fields. The resulting expression are

lengthy and are collected in appendix A for convenience.

It is interesting to study the classical version of the Weil model and compare it with

known models. The classical Weil sigma model is obtained by truncating the field content

– 7 –
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of the full Weil sigma model to the ghost number 0 sector. The classical action of the

model is found to be

SWc =

∫

Σ

[

− bi
(

FA
i +B+i

)

]

. (2.17)

This is essentially a BF like field theory. The symmetry variations of classical Weil sigma

model are obtained from the BV variations of the full Weil sigma model by retaining only

the ghost fields of ghost number 1,

δWcA
i = ψi −DAc

i, (2.18a)

δWcbi = fk
jic

jbk (2.18b)

δWcB
+i = DAψ

i − f i
jkc

jB+k (2.18c)

δWcc
i = −

1

2
f i

jkc
jck, (2.18d)

δWcψ
i = −f i

jkc
jψk. (2.18e)

It is simple to verify that SWc is invariant under the above field variations

δWcSWc = 0. (2.19)

The classical field variation operator δWc is nilpotent

δWc
2 = 0. (2.20)

We stress that this relation holds off-shell.

3. The gauge fixing of the Weil model

To yield a field theory suitable for quantization, the Weil sigma model has to be gauge

fixed. To this end, we introduce two trivial pairs of fields and their antifields.

1. c̃ ∈ Ω0(Σ,Ad∨Q[−1]), γ ∈ Ω0(Σ,Ad∨Q[0]) and their antifields c̃+ ∈ Ω2(Σ,AdQ[0]),

γ+ ∈ Ω2(Σ,AdQ[−1]).

2. C̃∈Ω0(Σ,Ad∨Q[−2]), Γ∈Ω0(Σ,Ad∨Q[−1]) and their antifields C̃+ ∈ Ω2(Σ,AdQ[1]),

Γ+ ∈ Ω2(Σ,AdQ[0]).

The Weil sigma model auxiliary BV odd symplectic form is

ΩWaux =

∫

Σ

[

δc̃+iδc̃i + δγ+iδγi + δC̃+iδC̃i + δΓ+iδΓi

]

. (3.1)

The Weil sigma model auxiliary BV action is

SWaux =

∫

Σ

[

c̃+iγi + C̃+iΓi

]

. (3.2)

The BV variations of the auxiliary fields are

δWauxc̃i = γi, (3.3a)

δWauxγi = 0, (3.3b)

– 8 –
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δWauxγ
+i = −c̃+i, (3.3c)

δWauxc̃
+i = 0, (3.3d)

δWauxC̃i = −Γi, (3.3e)

δWauxΓi = 0, (3.3f)

δWauxΓ
+i = −C̃+i, (3.3g)

δWauxC̃
+i = 0. (3.3h)

One has as usual

δWauxSWaux = 0. (3.4)

δWaux is nilpotent,

δWaux
2 = 0. (3.5)

The gauge fixing is implemented by adding the auxiliary fields to the field content of

the Weil sigma model and by adding the auxiliary field action SWaux to the Weil sigma

model action SW :

SW ext = SW + SWaux. (3.6)

The gauge fixed action IW is obtained by restricting SW ext to a suitable Lagrangian sub-

manifold LW in field space

IW = SW ext

∣

∣

LW
. (3.7)

IW is invariant under a BRST symmetry sW , which is the residual BV symmetry left intact

by the gauge fixing.

The Lagrangian submanifold LW is defined in terms of a ghost number −1 gauge

fermion ΨW in the form φ+ = δΨW /δφ, where φ is any field. The gauge fermion we choose

has the following form:

ΨW =

∫

Σ

[

− hijbiBj ∗ 1 + C̃iDA ∗ ψi + c̃iDA0
∗ (Ai −A0

i)

]

, (3.8)

where h is an Ad invariant metric on g. Above, ∗ denotes the Hodge operator associated

with a metric of Σ. A0 is a background connection of Q. The insertion of A0 is required

by the global definedness on Σ of the integrand in the right hand side of (3.8). Then, LW

turns out to be explicitly defined by the constraints

b+i = −hijBj ∗ 1, (3.9a)

B+i = −hijbj ∗ 1, (3.9b)

c+i = 0, (3.9c)

C+
i = 0, (3.9d)

A+
i = ∗DA0

c̃i + fk
ji ∗ ψ

jC̃k, (3.9e)

ψ+
i = − ∗DAC̃i, (3.9f)

C̃+i = DA ∗ ψi, (3.9g)

Γ+i = 0, (3.9h)
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c̃+i = DA0
∗ (Ai −A0

i), (3.9i)

γ+i = 0. (3.9j)

Substituting (3.9) into (A.2) in accordance with (3.7), one then finds that the gauge

fixed action IW is

IW =

∫

Σ

[

γiDA0
∗ (Ai −A0

i) + c̃iDA0
∗ ψi −DA0

c̃i ∗DAc
i + hijbibj ∗ 1 (3.10)

− biFA
i +BiDAψ

i −DAC̃i ∗DAC
i −

(

Γi + f j
kiC̃jc

k
)

DA ∗ ψi

+ f i
jkC̃iψ

j ∗ ψk + f ij
kBiBjC

k ∗ 1

]

.

The BRST variations of the fields are obtained from (A.5), (3.3) upon restriction to

LW . They read

sWAi = ψi −DAc
i, (3.11a)

sWψi = −DAC
i − f i

jkc
jψk, (3.11b)

sW bi = fk
jic

jbk + fk
jiC

jBk, (3.11c)

sWBi = −bi + fk
jic

jBk, (3.11d)

sW ci = Ci −
1

2
f i

jkc
jck, (3.11e)

sWCi = −f i
jkc

jCk, (3.11f)

sW c̃i = γi, (3.11g)

sWγi = 0, (3.11h)

sW C̃i = −Γi, (3.11i)

sW Γi = 0. (3.11j)

One can verify directly that

sW IW = 0. (3.12)

Further, one has

sW
2 = 0. (3.13)

In general, the BRST variation operator is nilpotent only on-shell. In this case however, it

does square to 0 off-shell.

Using (3.11), it can be verified that

IW = SW top + sW ΨW , (3.14)

where the topological action SW top is given by

SW top =

∫

Σ

[

− biFA
i +BiDAψ

i

]

. (3.15)
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This relation shows the topological nature of the theory. All dependence on the metric of Σ

and the background connection A0 is buried inside the gauge fermion ΨW . The topological

quantum field correlators therefore are going to be independent from these data.

The topological field theory, which we are dealing with, is in fact the 2-dimensional

version of Donaldson-Witten theory [36, 37], which describes the moduli space of flat

connection of a trivial principal G-bundle Q. This is easily seen from the BRST varia-

tions (3.11) obtained above. It is known that a topological field theory localizes on the

BRST invariant purely bosonic on-shell configurations. Setting all the fermionic fields to

zero in the BRST variations and imposing that the resulting expressions vanish leads to

the equation bi = 0, which, on shell, is equivalent to

F i = 0. (3.16)

We remark that the above procedure yields at once the full topological field theory

action and the Faddeev-Popov gauge fixing action. The latter consists of those terms in

the right hand side of (3.10), which depend explicitly on the background connection A0.

4. The Poisson-Weil sigma model

The Poisson-Weil sigma model stems from coupling the Weil sigma model described in

section 2 and the Poisson sigma model [32, 33]. This procedure is in fact a way of gauging

the latter and generalizes our original construction in [31]. As for the Weil sigma model,

the covariance of the superfields of the version of the Poisson-Weil sigma model illustrated

below is more general than that originally envisaged in [31], but its BV formulation is

essentially the same. The reader is therefore invited again to read that paper for more

details on the BV formalism used and the derivation of the classical master equation and

BV variations below.

We consider a geometrical setting consisting of the following elements.

1. A closed surface Σ.

2. A compact connected Lie group G with Lie algebra g.

3. A principal G-bundle Q over Σ.

4. A manifold M carrying a smooth effective left G-action with fundamental vector field

u ∈ C∞(M,TM ⊗ g∨) .

5. A G-invariant 2-vector P ∈ C∞(M,∧2TM) and a G-equivariant g∨-valued scalar

µ ∈ C∞(M, g∨).

The geometry associated with these data is rich and intricate. Some of its features have

already emerged in the work [18 – 20]. Here we shall limit ourselves to indicate the aspects

of it which are most directly relevant in our analysis.

The first three geometrical data are the ones entering in the definition of the Weil

sigma model as illustrated in section 2. The fourth geometrical datum allows one to define
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the bundle EM = Q ×G M with base Σ. EM can be described as follows. Let {UA} be

a sufficiently fine open covering of Σ. Then, locally, one has EM |UA
≃ UA ×M . EM is

obtained by identifying (z,mA) ∈ UA ×M and (z,mB) ∈ UB ×M with z ∈ UA ∩ UB 6= ∅

and mA = gAB(z)(mB), where {gAB} is the G-valued 1-cocycle representing Q with respect

to {UA} and g(m) denotes the action of the group element g ∈ G on the point m ∈ M .

When Q is trivial, one has EM ≃ Σ×M . Sections x ∈ Γ(Σ, EM ) generalize the customary

embeddings x : Σ →M , which they reduce to when Q is trivial.

The bundle projection a1 : T [1]Σ → Σ introduced in section 2 allows one to pull-

back EM to T [1]Σ yielding the bundle a1
∗EM with base space T [1]Σ. In terms of a fine

open covering {UA} of Σ, one has a1
∗EM |a1

−1(UA) ≃ a1
−1(UA)×M . a1

∗EM is obtained by

identifying (z,mA) ∈ a1
−1(UA)×M and (z,mB) ∈ a1

−1(UB)×M with a1(z) ∈ UA∪UB 6= ∅

and mA = gAB(z)(mB), where {gAB} is the G-valued 1-cocycle representing a1
∗Q with

respect to {a1
−1(UA)} defined in section 2. When Q is trivial, one has a1

∗EM ≃ T [1]Σ×M .

Sections x ∈ Γ(T [1]Σ, a1
∗EM ) generalize the customary superembeddings x : T [1]Σ →M ,

which they reduce to when Q is trivial.

Associated with EM are the vector bundle Vert TEM and its dual Vert∗TEM with

base space EM , where VertTEM = ker πEM∗, πEM
: EM → Σ being the bundle projection

and πEM∗ : TEM → TΣ its tangent map. Given a fine enough open covering {UA} of

Σ, the transition functions of the bundle VertTEM with respect to the open covering

{πEM

−1(UA)} are of the form tAB(e) = gAB(z)∗(mB) for πEM
(e) ∈ UA ∩ UB , where e ≃

(z,mB) in the trivialization EM |UB
≃ UB ×M and g∗(m) : TmM → Tg(m)M is the tangent

map at m ∈ M of the action g : M → M of g ∈ G. Given x ∈ Γ(Σ, EM ), one can define

the pull-back bundles x∗VertTEM and x∗Vert∗TEM , which are vector bundles with base

space Σ. The transition functions of the bundle x∗Vert TEM are tAB(z) = gAB(z)∗(xB(z)),

where x(z) ≃ (z, xB(z)) in the trivialization EM |UB
≃ UB ×M .

This construction can be extended by replacing EM by a1
∗EM and Σ by T [1]Σ

throughout above. In this way, one builds the vector bundles VertTa1
∗EM and its dual

Vert∗Ta1
∗EM with base a1

∗EM . The transition function of VertTa1
∗EM are of the form

tAB(e) = gAB(z)∗(mB) for πa1
∗EM

(e) ∈ a1
−1(UA) ∩ a1

−1(UB), where e ≃ (z,mB) in

the trivialization a1
∗EM |a1

−1(UB) ≃ a1
−1(UB) × M . Given x ∈ Γ(T [1]Σ, a1

∗EM ), one

can build the pull-back bundles x∗VertTa1
∗EM and x∗Vert∗Ta1

∗EM , which are vector

bundles with base space T [1]Σ. The transition functions of the bundle x∗VertTa1
∗EM are

tAB(z) = gAB(z)∗(xB(z)), where x(z) ≃ (z,xB(z)) in the trivialization a1
∗EM |a1

−1(UB) ≃

a1
−1(UB) ×M .

The fundamental vector field u satisfies the basic equivariance relation3

[ui, uj ]
a = ui

b∂buj
a − uj

b∂bui
a = fk

ijuk
a. (4.1)

The G-invariance of the 2-vector P and the G-equivariance of the scalar µ are crucial in

3This relation fixes also the overall sign convention for u used in the paper. According to this, ga(m) =

ma
− ξiui

a(m) + O(ξ2) for g = exp(ξ) ∈ G with ξ ∈ g. See appendix C.
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our construction. Infinitesimally, they are equivalent to the relations

lui
P ab = ui

c∂cP
ab − ∂cui

aP cb − ∂cui
bP ac = 0. (4.2a)

lui
µj = ui

b∂bµj = fk
ijµk, (4.2b)

The field content of the Poisson-Weil sigma model consists the following superfields.

1. The superfields of the Weil sigma model.

2. A section x ∈ Γ(T [1]Σ, a1
∗EM ).

3. A section y ∈ Γ(T [1]Σ,x∗Vert∗Ta1
∗EM [1]).

The BV odd symplectic form is given by

ΩPW = ΩW +

∫

T [1]Σ
̺δxaδya, (4.3)

where ΩW is the BV odd symplectic form of the Weil sigma model given in (2.1).

The action of the Poisson-Weil sigma model is

SPW = SW +

∫

T [1]Σ
̺

[

ya

(

dxa + ui
a(x)ci

)

+ µi(x)Ci +
1

2
P ab(x)yayb

]

, (4.4)

where SW is the action of the Weil sigma model given in (2.2). The G-invariance of P and

the G-equivariance of µ ensure the global definedness of the integrand in the right hand

side of (4.4).

It can be verified by explicit computation that SPW satisfies the classical master equa-

tion

(SPW, SPW)PW = 0, (4.5)

where (·, ·)PW are the BV antibrackets associated with the BV form ΩPW, provided u, µ,

P satisfy the conditions

P ad∂dP
bc + P bd∂dP

ca + P cd∂dP
ab = 0, (4.6a)

ui
a + P ab∂bµi = 0, (4.6b)

[31]. Eqs. (4.6a), (4.6b) imply respectively the following properties.

1. P is a Poisson 2-vector and M is thus a Poisson manifold.

2. µ is a moment map for the G-action, which is therefore Hamiltonian.

The BV variations of the Poisson-Weil sigma model fields are

δPWbi = δW bi − ui
a(x)ya, (4.7a)

δPWci = δW ci, (4.7b)

δPWBi = δW Bi − µi(x), (4.7c)

δPWCi = δW Ci, (4.7d)
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δPWxa = dxa + ui
a(x)ci + P ab(x)yb, (4.7e)

δPWya = dya + ∂aui
b(x)ybc

i + ∂aµi(x)Ci +
1

2
∂aP

bc(x)ybyc, (4.7f)

where δPW = (SPW, ·)PW and the Weil sigma model δW variations are given by (2.4) [31].

From (4.5), it follows that the Poisson-Weil sigma model action is BV invariant

δPWSPW = 0. (4.8)

Again from (4.5), it follows that the Poisson-Weil sigma model BV variation operator δPW

is nilpotent

δPW
2 = 0. (4.9)

Relation to the Hamiltonian basic Poisson-Lichnerowicz cohomology. When

conditions (4.6), (4.2) are satisfied, if a ∈ g∨ with coadjoint orbit Oa and µ−1(Oa) is a

submanifold of M on which G acts freely and properly, then the quotient Ma = µ−1(Oa)/G

inherits a Poisson structure Pa, by a classic result of Marsden and Ratiu [40]. One considers

mainly M0 = µ−1({0})/G ≡M//G.

From the above discussion, it appears that the Poisson-Weil sigma model on a Poisson

manifold M carrying a Hamiltonian action of a group G encodes the Hamiltonian reduction

of M by G. Upon suitably restricting the image of x to µ−1(Oa), one expects to obtain

some kind of sigma model on Ma. When the principal bundle Q is trivial, this should be an

ordinary Poisson sigma model onMa. The embedding fields of the model are then just maps

x : Σ → Ma. Conversely, when Q is non trivial, one should obtain a generalized Poisson

sigma model on Ma. The embedding fields of the model are then sections x ∈ Γ(Σ, EM )

such that, in any trivialization EM |UA
≃ UA×M , xA(z) ∈ µ−1(Oa) for z ∈ UA. (Note that

this property is independent from the chosen trivialization). Intuitively, they are some kind

of “Q-twisted” maps x : Σ → Ma. These facts should be reflected in the BV cohomology

of the Poisson-Weil sigma model, which we explore next. As we shall see, this investigation

will bring us close to the boundary of known mathematics.

Recall that a Poisson manifold M with Poisson 2-vector field P is characterized by the

algebra of multivector fields C∞(M,∧∗TM) and by the Poisson-Lichnerowicz differential

σPL = [P, ·], where [·, ·] are the Schouten brackets on C∞(M,∧∗TM) (see for instance [41]

for background material). Since σPL is nilpotent, (C∞(M,∧∗TM), σPL) is a differential

complex, the Poisson-Lichnerowicz complex. The associated cohomology is the Poisson-

Lichnerowicz cohomology H∗

PL(M). Each cohomology class is represented by a Poisson-

Lichnerowicz cocycle, that is a multivector field α ∈ C∞(M,∧∗TM) satisfying

σPLα = 0. (4.10)

This cocycle is defined up to a Poisson-Lichnerowicz coboundary, i. e. a multivector field

belonging to the image of σPL.

A simple analysis shows that H0
PL(M) is the algebra of Casimir functions of M and

H1
PL(M) is the quotient of the space of Poisson vector fields of M over the space of Hamil-

tonian vector fields, etc. Further, the Poisson 2-vector field P , viewed as an element of
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C∞(M,Hom(T ∗M,TM)), induces a homomorphism P# of the ordinary de Rham coho-

mology H∗

dR(M) into H∗

PL(M), which is an isomorphism in the symplectic case.

Suppose that M carries a Hamiltonian smooth effective left G-action with fundamental

vector field u ∈ C∞(M,TM ⊗ g∨) and G-equivariant moment map µ ∈ C∞(M, g∨) and

leaving P invariant. We call a multivector field α ∈ C∞(M,∧∗TM) Hamiltonian basic, if

α satisfies the conditions

idµi
α = 0, (4.11a)

lui
α = 0, (4.11b)

where iω denotes contraction with the 1-form ω ∈ C∞(M,T ∗M) and lv is the Lie derivative

along the vector field v ∈ C∞(M,TM), i.e. if α is G-invariant and tangent to the µ fibers.

The terminology is justified by the analogy to the notion of basic forms of a manifold with a

group action. We denote by C∞(M,∧∗TM)basic the subalgebra of C∞(M,∧∗TM) spanned

by the Hamiltonian basic multivector fields. Using the relations

idµi
σPL + σPLidµi

= lui
, (4.12a)

σPLlui
− lui

σPL = 0, (4.12b)

lui
idµi

− lui
idµi

= fk
ijidµk

, (4.12c)

one shows that (C∞(M,∧∗TM)basic, σPL) is a subcomplex of (C∞(M,∧∗TM), σPL), the

Hamiltonian basic Poisson-Lichnerowicz complex. The associated cohomology is the Hamil-

tonian basic Poisson-Lichnerowicz cohomology H∗

PLbasic(M). Each cohomology class is

represented by a Hamiltonian basic Poisson-Lichnerowicz cocycle, i.e. a multivector field

α ∈ C∞(M,∧∗TM) satisfying the conditions (4.10), (4.11). This cocycle is defined up to

a Hamiltonian basic Poisson-Lichnerowicz coboundary, i. e. a multivector field belonging

to the image of σPL restricted to C∞(M,∧∗TM)basic.

Repeating the analysis done for ordinary Poisson cohomology, one can show that

H0
PLbasic(M) is the algebra of ordinary Casimir functions of M and H1

PLbasic(M) is the

quotient of the space of G-invariant Poisson vector fields of M tangent to the µ fibers

over the space of Hamiltonian vector fields with G-invariant Hamiltonians, etc. Further,

P induces a homomorphism P# of the ordinary basic de Rham cohomology H∗

dRbasic(M)

into H∗

PLbasic(M), which is an isomorphism in the symplectic case.

The Hamiltonian basic Poisson-Lichnerowicz cohomology H∗

PLbasic(M) was introduced

and studied in a more general context by Ginzburg in [42]. It is natural to expect

H∗

PLbasic(M) to be related to the Poisson-Lichnerowicz cohomology of the reduced Poisson

manifolds Ma defined above. However, to the best of our knowledge, so far this relation

has not been elucidated in the mathematical literature except for symplectic manifolds

in [43] by Kirwan, who showed the existence of a natural surjective generally non injective

homomorphism κ : H∗

dRbasic(M) ≃ H∗

PLbasic(M) → H∗

dR(M0). Virtually nothing is known

for more general Poisson manifolds.

We shall not attempt an exhaustive study of the BV cohomology of the Poisson-Weil

sigma model. We shall only try to highlight some of its novel features and its relation

to the Hamiltonian basic Poisson-Lichnerowicz cohomology. If one wished to construct a
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superfield out of a generic multivector field α ∈ C∞(M,∧∗TM), one would start by trying

with something of the form

α =
∑

p

1

p!
αa1...ap(x)ya1

· · ·yap
. (4.13)

This object is however only locally defined since the superfields xa, ya are defined only up

to a local G-action. To render α globally defined, one has to demand the multivector field

α to be G-invariant, α ∈ C∞(M,∧∗TM)G. Infinitesimally, this is equivalent to (4.11b).

A straightforward calculation yields

δPWα = dα +
∑

p

1

p!
(idµi

α)a1...ap(x)Ciya1
· · ·yap

(4.14)

−
∑

p

1

p!
(σPLα)a1...ap(x)ya1

· · · yap
.

Hence, one has

δPWα = dα (4.15)

provided α ∈ C∞(M,∧∗TM)G satisfies (4.10), (4.11a). In that case, α is a cocycle of

the mod d BV cohomology. Furthermore, the mapping α 7→ α defines an isomorphism of

H∗

PLbasic(M) and a distinguished sector of the mod d BV cohomology.

As already remarked earlier, in field theory, one is interested in the BV cohomology

rather than the mod d BV cohomology, since BV cocycles are observables. For any super-

cycle C of T [1]Σ,

α(C) =

∮

C

α (4.16)

is a cocycle of the BV cohomology

δPWα(C) = 0. (4.17)

For a fixed homology class [C] of T [1]Σ, the mapping α 7→ α(C) defines a generally non

injective homomorphism of H∗

PLbasic(M) into the BV cohomology.

We conclude that, for a fixed homology class [C] of T [1]Σ, α(C) is an observable

provided α is a Hamiltonian basic Poisson-Lichnerowicz cocycle. This establishes a ho-

momorphism of the Hamiltonian basic Poisson-Lichnerowicz cohomology H∗

PLbasic(M) into

the Poisson-Weil BV cohomology.

In [42], Ginzburg also defined the equivariant Poisson-Lichnerowicz cohomology

H∗

PLG(M). This can be realized in two different but equivalent models. In the Weil model,

one relies on the Weil algebra (W (g), dW ) complex described in section 2. H∗

PLG(M) is the

cohomology of the complex ((C∞(M,∧∗TM)⊗W (g))basic, σPLW), where basicity is defined

in terms of the graded derivations iWi = idµi
+ ii, lWi = lui

+ li, by extending (2.10), (4.11)

in obvious fashion, and σPLW = σPL +dW . In the Cartan model, H∗

PLG(M) is the cohomol-

ogy of the complex ((C∞(M,∧∗TM) ⊗ ∨∗g∨[2])G, σPLC), where G-invariance is defined in

terms of lCi = lui
+ li and σPLC = σPL−Ωkidµk

, with Ωi the degree 2 generators of ∨∗g∨[2]

and li defined as in (2.9d).
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When G is compact and µ is a submersion onto g∨, H∗

PLbasic(M) is isomorphic to

the equivariant Poisson-Lichnerowicz cohomology H∗

PLG(M) [42]. Using the Cartan model

for simplicity, a class of H∗

PLbasic(M) is represented by a G-invariant multivector field

α ∈ (C∞(M,∧∗TM) ⊗ ∨∗g∨[2])G,

lCiα = 0, (4.18)

satisfying the cocycle condition

σPLCα = 0. (4.19)

This suggests a possible generalization of the ansatz (4.13) of the form

α =
∑

p,q

1

p!q!
αa1...ap

i1...iq(x)ya1
· · ·yap

Ci1 · · ·Ciq , (4.20)

where α ∈ (C∞(M,∧∗TM) ⊗ ∨∗g∨[2])G. The G-invariance of α is required by the proper

global definedness of the superfield α. A straightforward calculation leads to

δPWα = dα −
∑

p,q

1

p!q!
(σPLCα)a1...ap

i1...iq(x)ya1
· · · yap

Ci1 · · ·Ciq .

Hence, α satisfies (4.15), provided α ∈ C∞(M,∧∗TM)G satisfies (4.19). In this way,

proceeding exactly in the same way as above, one can construct observables of the field

theory. However, this procedure is not going to yield genuinely new observables. In fact,

the inclusion C∞(M,∧∗TM)basic ⊂ (C∞(M,∧∗TM)⊗∨∗g∨[2])G induces the isomorphism

H∗

PLbasic(M) ≃ H∗

PLG(M) mentioned above. This means that any mod d BV cocycle of

the form (4.20) is always BV cohomologous to one of the form (4.13).

The Poisson-Weil sigma model in components. One can expand the Poisson-Weil

sigma model fields in homogeneous components. Relations (2.16) still hold. Further, one

has

xa(z) = xa(z) + ϑαη+
α

a(z) −
1

2
ϑαϑβy+

αβ
a(z), (4.21a)

ya(z) = ya(z) + ϑαηαa(z) +
1

2
ϑαϑβx+

αβa(z). (4.21b)

Again, the ghost number of the various component fields is given by the degree of the

superfield they appear in minus the number of ϑα they are multiplied by. The covariance

properties of the component fields are intricate, but they are completely determined by

those of the superfield which they belong to. Again, the choice of the signs is conventional.

The action and the BV variations of the Poisson-Weil sigma model (cf. eqs. (4.4), (4.7))

can be written down explicitly in terms of the components fields. The resulting expression

are rather messy and are collected in appendix B for convenience.

It is interesting to study the classical version of the Poisson-Weil model and compare it

with that of the ordinary Poisson model. As for the classical Weil sigma model, the classical

Poisson-Weil sigma model is obtained truncating the field content of the full Poisson-Weil
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sigma model to the ghost number 0 sector. The classical action of the model is then found

to be

SPWc = SWc +

∫

Σ

[

− µi(x)B
+i + ηaDAx

a +
1

2
P ab(x)ηaηb

]

, (4.22)

where the classical Weil sigma model action SWc is given in (2.17). Again, as for the

classical Weil sigma model, the symmetry variations of classical Poisson-Weil sigma model

are obtained from the BV variations of the full Poisson-Weil sigma model by retaining only

the ghost fields of ghost number 1,

δPWcA
i = δWcA

i, (4.23a)

δPWcbi = δWcbi − ui
a(x)ya, (4.23b)

δPWcB
+i = δWcB

+i, (4.23c)

δPWcc
i = δWcc

i, (4.23d)

δPWcψ
i = δWcψ

i, (4.23e)

δPWcx
a = P ab(x)yb + ui

a(x)ci, (4.23f)

δPWcηa = DAya + ∂aP
bc(x)ηbyc + ∂aui

b(x)ηbc
i − ∂aµi(x)ψ

i (4.23g)

δPWcya =
1

2
∂aP

bc(x)ybyc + ∂aui
b(x)ybc

i, (4.23h)

where the classical Weil sigma model δWc variations are given by (2.18). One check that

SPWc is invariant under the above field variations,

δPWcSPWc = 0. (4.24)

The classical field variation operator δPWc is nilpotent but only on-shell,

δPWc
2 = 0 on-shell. (4.25)

5. The gauge fixing of the Poisson-Weil model

In this section, we carry out the gauge fixing of the Poisson-Weil sigma model. Unlike the

gauge fixing of the Weil sigma model, which is essentially unique, the gauge fixing of the

Poisson-Weil sigma model can in principle be carried out in several generally inequivalent

ways depending on the nature of the target space geometry. Exploring all the possibilities

is out question. Below, we concentrate on a gauge fixing prescription that leads to an

interesting topological field theory.

We assume that the data defining the Poisson-Weil sigma model satisfy the following

additional requirements.

1. The manifold M is endowed with a Kaehler structure.

2. The G-action on M preserves the Kaehler structure.

3. The G-invariant 2-vector P is the one canonically associated with the Kaehler struc-

ture.
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By a Kaehler structure, we mean a pair (J, g) formed by an almost complex structure J

and a Riemannian metric g, such that g is Hermitian with respect to J and J is parallel

with respect to the Levi-Civita connection of g. The almost complex structure J is then

automatically integrable and, thus, a complex structure. The Kaehler form ω = gJ defines

a symplectic structure and thus a Poisson structure P = ω−1. Explicitly

P rs = 0, P rs̄ = −igrs̄ and c. c. (5.1)

The G-invariance of the Kaehler structure entails the G-invariance of P .

As explained in section 4, the consistency of the model requires the G-action to be

Hamiltonian with moment map µ. Explicitly,

ur
i = igrs̄∂s̄µi and c. c. (5.2)

The invariance of the Kaehler structure under the G-action entails that the funda-

mental vector field u of the G-action is both holomorphic and Killing. This leads to the

relations

∇r̄u
s
i = 0 and c. c., (5.3a)

∇r̄u
s̄
i + gr̄tg

s̄u∇uu
t
i = 0 and c. c.. (5.3b)

Combining (5.2), (5.3a), (5.3b), one finds that µ must satisfy the equation

∇r∂sµi = 0 and c. c.. (5.4)

Proceeding in a way analogous to that of the Weil sigma model, the gauge fixing

is implemented by adding the auxiliary fields of the Weil sigma model (cf. section 3) to

the field content of the Poisson-Weil sigma model and by adding the auxiliary field action

SWaux (cf. section 3.2) to the Poisson-Weil sigma model action SPW:

SPW ext = SPW + SWaux. (5.5)

The gauge fixed action IPW is obtained by restricting SPW ext to a suitable Lagrangian

submanifold LPW in field space,

IPW = SPW ext

∣

∣

LPW

. (5.6)

IPW is invariant under a BRST symmetry sPW, which is the residual BV symmetry left

intact by the gauge fixing.

The gauge fixing requires, among other things, the choice of a metric of Σ. In this way,

as is well-known, Σ acquires in canonical fashion a complex structure. The tangent bundle

of Σ splits then in its holomorphic and antiholomorphic components TΣ = T (1,0)Σ⊕T (0,1)Σ

and similarly for the cotangent bundle. Henceforth, we conveniently redefine our notation

according to φ(1,0) → φc, φ
(0,1) → φc for a given 1-form field φ ∈ Ω∗(Σ).

We implement the gauge fixing, by using the gauge fixing conditions (3.9) previously

employed in the Weil sector of the model and the further conditions

ηcr = 0 and c. c., (5.7a)

η+
c
r = 0 and c. c., (5.7b)
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x+
r = 0 and c. c., (5.7c)

y+r = 0 and c. c., (5.7d)

[29, 44]. Using (4.3), it is easy to see that these define a Lagrangian submanifold LPW

in field space. Note that, unlike the Weil sigma model, the condition (5.7) are not derived

directly from a gauge fermion, but that does not matter as long as LPW is Lagrangian as

required.

After a computation, we find

IPW =IW +

∫

Σ

[

igr̄s(x)DAcx
r̄DAcx

s (5.8)

+ η+
c
r
(

D∇Acyr − ∂rµi(x)ψc
i
)

+ η+
c
r̄
(

D∇Acyr̄ − ∂r̄µi(x)ψc
i
)

+ η+
c
rη+

c
s̄
(

− iRtū
rs̄(x)ytyū + ∂r∂s̄µi(x)C

i
)

+ bih
ijµj(x) ∗ 1 −Bih

ij
(

ur
j(x)yr + ur̄

j(x)yr̄

)

∗ 1

]

,

where IW is the gauge fixed Weil sigma model action (cf. eq. (3.10)) and DAc, DAc are the

holomorphic and antiholomorphic component of the gauge covariant derivative operator

DA (cf. eqs. (A.4), (B.3), (B.5)) and we have defined

D∇Acyr = DAcyr − Γs
tr(x)DAcx

tys and c. c., (5.9)

which is both gauge and general coordinate covariant (see appendix C.). In the above

expression, wedge product of forms is understood again. Expression (5.8) is obtained upon

eliminating the fields

η′cr = ηcr − Γu
tr(x)η

+
c
tyu − igrs̄(x)DAcx

s̄ and c. c., (5.10)

which decouple from all the other.

The Poisson-Weil sigma model BRST variations of the fields are obtained

from (A.5), (3.3), (B.4) upon restriction to LPW. They read

sPWA
i =sWAi, (5.11a)

sPWψ
i =sWψi, (5.11b)

sPWbi =sW bi − ur
i(x)yr − ur̄

i(x)yr̄, (5.11c)

sPWBi =sWBi − µi(x) (5.11d)

sPWc
i =sW ci, (5.11e)

sPWC
i =sWCi, (5.11f)

sPWc̃
i =sW c̃i, (5.11g)

sPWγ
i =sWγi, (5.11h)

sPWC̃
i =sW C̃i, (5.11i)

sPWΓi =sW Γi, (5.11j)
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sPWx
r = − igrs̄(x)ys̄ + ur

i(x)c
i and c.c., (5.11k)

sPWyr =Γs
tr(x)

(

− igtū(x)yū + ut
i(x)c

i
)

ys (5.11l)

+ ∇ru
s
i(x)ysc

i + ∂rµi(x)C
i and c.c.,

sPWη
+

c
r = − Γr

ts(x)
(

− igtū(x)yū + ut
i(x)c

i
)

η+
c
s (5.11m)

+DAcx
r + ∇su

r
i(x)η

+
c
sci and c.c.,

where the Weil sigma model sW BRST variations are given by (3.11). One can verify

directly that IPW is BRST invariant

sPWIPW = 0. (5.12)

Further, one has

sPW
2 = 0 on shell. (5.13)

Unlike the Weil sigma model, the Poisson-Weil BRST variation operator is nilpotent only

on-shell.

It us easy to see that the field theory we have obtained by gauge fixing is topological.

One defines a ghost number −1 gauge fermion ΨPW by

ΨPW = ΨW +

∫

Σ

[

1

2
igrs̄(x)η

+
c
rDAcx

s̄ −
1

2
igr̄s(x)η

+
c
r̄DAcx

s

]

, (5.14)

where ΨW is the gauge fermion of the Weil sigma model given by (3.8). Using (5.11), it

can be verified that

IPW = SPW top + sPWΨPW on shell, (5.15)

where the Poisson-Weil topological action SW top is given by

SPW top = SW top +

∫

Σ
x∗Aω, (5.16)

with the Weil topological action SW top given by (3.15). The globally defined 2-form x∗Aω

is the gauge covariant pull-back of ω

x∗Aω =
1

2
ωab(x)DAx

aDAx
b = x∗ω + d(µi(x)A

i) − µi(x)F
i. (5.17)

The above expression is obtained by using, among other things, the remarkable gauge

covariant Kaehler identity

igr̄s(x)DAcx
r̄DAcx

s − igrs̄(x)DAcx
rDAcx

s̄ = x∗Aω. (5.18)

This calculation shows the topological nature of the theory. All dependence on the metric

of Σ and the background connection A0 is again buried inside the gauge fermion ΨPW. The

topological quantum field correlators, therefore, are going to be independent from these

data.

The topological field theory which we are dealing with has been studied by Baptista in

a series of papers [18 – 20]. It describes the moduli space of solutions of the so called vortex
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equations [45 – 50]. Strictly speaking, the sigma model Lagrangian obtained above differs

from Baptista’s. However, this may be simply a gauge fixing artifact. The fact that our

sigma model and Baptista’s have the same field content and localize on the same space of

field configurations, as we show momentarily, indicates that they are the same topological

field theory. As well known, topological field theories have BRST exact Lagrangians and

this makes them invariant as field theories under large classes of deformations. So, it is not

surprising that the same topological field theory may have several Lagrangian realizations.

What characterizes a topological field theory is its field content and the space of field

configurations on which the field theory localizes. Indeed, the path integral of the field

theory is just a complicated way of writing a functional Dirac delta with support on such

configurations. Thus, one expects two such theories sharing the same set of fields and

localizing on the same field configurations to be equivalent. However, a complete proof of

this statement would require an in depth analysis of the BRST cohomologies of the two

theories and a proof of their equivalence, a task which is beyond the scope of the present

paper.

Let us now show that the topological field theory we have obtained describes the

moduli space of solutions of the vortex equations, as claimed in the previous paragraph.

To begin with, we note that the geometrical data of the gauge fixed Poisson-Weil sigma

model are precisely the same as those of the vortex equations: a principal G-bundle Q

over a Riemann surface Σ and a Kaehler manifold M with a Hamiltonian effective action

preserving the Kaehler structure. The field configurations, on which our topological field

theory localizes, are the BRST invariant purely bosonic on-shell configurations. They are

easily obtained from the expression (5.11) of the BRST variations obtained above. Setting

all the fermionic fields to zero in (5.11) and imposing that the resulting expressions vanish

on shell leads to the equations

F i + hijµj(x) ∗ 1 = 0, (5.19)

DAcx
r = 0, (5.20)

which are precisely the vortex equations.

The vortex configurations are extrema of the energy functional

E =

∫

Σ

[

1

2
hijF

i ∗ F j +
1

2
gab(x)DAx

a ∗DAx
b +

1

2
hijµiµj(x) ∗ 1

]

, (5.21)

first written down in [45, 50]. However, they are not generic extrema. They are instanton

like energy minimizing configurations. Indeed, by means of Bogomolny type manipulations,

one can show that E can be written as

E =ηEM
+

∫

Σ

[

− 2igrs̄(x)DAcx
rDAcx

s̄ (5.22)

+
1

2
hij

(

F i + hikµk(x) ∗ 1
)

∗
(

F j + hjlµl(x) ∗ 1
)

]

,

where ηEM
is given by

ηEM
= −

∫

Σ

[

x∗ω + d(µi(x)A
i)

]

. (5.23)
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ηEM
depends only on the homotopy class of x and is independent from A. It is thus a topo-

logical invariant characterizing the bundle EM . The remaining term in the right hand side

of (5.22) is positive definite and vanishes precisely, when the vortex equations (5.19), (5.20)

are satisfied. Thus, the energy E is minimized by the vortex configurations and the mini-

mum equals the topological invariant ηEM
. In this sense, vortex configurations are akin to

instantons.

Our gauged topological sigma model can be viewed as a topological field theoretic

completion of a purely bosonic theory with action E . Indeed, the ghost number 0 sector

IPW
0 of the action IPW after algebraically eliminating the auxiliary field b is given by

IPW
0 = −

1

2
ηEM

−
1

2
E . (5.24)

The topological sigma model, which we have obtained, is in fact the gauged version

of Witten’s A-model originally worked out in [11, 12]. In the case where the group G is

trivial, the action IPW reduces indeed to the well-known action of the A-model [44].

The A-model is known to be related to the quantum cohomology of the target man-

ifold M : its correlators compute the Gromov-Witten invariants. The importance of the

vortex equation moduli space stems from the realization that it enters the definition of the

Hamiltonian Gromov-Witten invariants [46].

6. Outlook

The constructions expounded in this paper are likely to be extendable in several directions.

We have formulated the Weil sigma model for a principal G-bundle Q over Σ with G

a Lie group. One possibility would be to generalize the model to the case where G is a

Poisson-Lie group. One expects the Lie bialgebra structure of g to play a basic role in this

case. The Weil sigma model described in the paper would be the special case where G has

the trivial Poisson structure.

As a further step, one may try to couple the generalized sigma Weil model so obtained

to the Poisson sigma model with target space M carrying a Hamiltonian Poisson action

of the Poisson-Lie group G. This would yield a generalized Poisson-Weil sigma model and

would be the gauging of the Poisson sigma model by the Poisson-Lie G-symmetry.4

The basic and equivariant Poisson-Lichnerowicz cohomology of M have been defined

and studied by Ginzburg [42] also for this more general setting. Note that the moment map

µ would be G∨-valued rather than g∨-valued in this case, where G∨ is dual Poisson-Lie

dual group of G. The BV cohomology of the generalized Poisson-Weil sigma model should

again be related to this more general cohomology.

The Poisson sigma model with a Poisson-Lie target space G has been studied in [51 –

53]. One may explore the relation of these models with the one resulting from the con-

structions just outlined.

It remains to be seen whether the generalized models are going to yield interesting

topological field theories upon gauge fixing. All this is left to future work.

4This possibility was suggested to us by F. Bonechi.
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A. The Weil model in components

In this appendix, we collect the explicit expressions of the action and the BV symmetry

transformations of the Weil sigma model in terms of the component fields.

The expansion of the Weil sigma model superfields in components is given in (2.16).

The ghost numbers of the components are given by the following table:

gh bi = 0, ghA+
i = −1, gh c+i = −2,

gh ci = +1, ghAi = 0, gh b+i = −1,

ghBi = −1, ghψ+
i = −2, ghC+

i = −3,

ghCi = +2, ghψi = +1, ghB+i = 0.

(A.1)

The Weil sigma model action SW (cf. eq. (2.2)) in components reads

SW =

∫

Σ

[

− bi
(

FA
i +B+i − f i

jkb
+jck

)

+A+
i

(

DAc
i − ψi) (A.2)

+Bi(DAψ
i − f i

jkc
jB+k − f i

jkb
+jCk

)

− ψ+
i

(

DAC
i + f i

jkc
jψk

)

+ c+i

(

Ci −
1

2
f i

jkc
jck

)

+ C+
if

i
jkc

jCk

]

,

where

FA
i = dAi +

1

2
f i

jkA
jAk (A.3)

is the curvature of the connection A and

DAX
i = dXi + f i

jkA
jXk, (A.4a)

DAYi = dYi − fk
jiA

jYk (A.4b)

are the gauge covariant derivatives ofX ∈ Ω∗(Σ,AdQ) and Y ∈ Ω∗(Σ,Ad∨Q), respectively.

Above, the various fields are local forms on Σ obtained by the corresponding components of

the basic superfields by the formal replacement ϑα → dzα. Wedge multiplication of forms

is understood.

The Weil sigma model BV variations (cf. eq. (2.4)) of the components are explicitly

given by

δW ci =Ci −
1

2
f i

jkc
jck, (A.5a)

δWAi =ψi −DAc
i, (A.5b)

δW b+i =B+i + FA
i − f i

jkc
jb+k, (A.5c)

δW bi =fk
jic

jbk + fk
jiC

jBk, (A.5d)

δWA+
i =DAbi + fk

jic
jA+

k + fk
jiC

jψ+
k − fk

jiψ
jBk, (A.5e)

δW c+i =DAA
+

i − fk
jib

+jbk + fk
jic

jc+k (A.5f)

− fk
jiψ

jψ+
k − fk

jiB
+jBk + fk

jiC
jC+

k,

δWCi = − f i
jkc

jCk, (A.5g)
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δWψi = −DAC
i − f i

jkc
jψk, (A.5h)

δWB+i =DAψ
i − f i

jkc
jB+k − f i

jkb
+jCk, (A.5i)

δWBi = − bi + fk
jic

jBk (A.5j)

δWψ+
i = −A+

i +DABi + fk
jic

jψ+
k, (A.5k)

δWC+
i =DAψ

+
i + fk

jic
jC+

k − fk
jib

+jBk − c+i, (A.5l)

as one can check by a simple computation.

B. The Poisson-Weil model in components

In this appendix, we collect the explicit expressions of the action and the BV symmetry

transformations of the Poisson-Weil sigma model in terms of the component fields.

The expansion of the Poisson-Weil sigma model superfields in terms of components is

given in (2.16), (4.21). The ghost numbers of the components are given by table (A.1) and

by the following one:

ghxa = 0, gh η+a = −1, gh y+a = −2,

gh ya = +1, gh ηa = 0, gh x+
a = −1.

(B.1)

The Poisson-Weil sigma model action SPW (cf. eq. (4.4)) in components is given by

SPW =SW +

∫

Σ

[

ηaDAx
a +

1

2
P ab(x)ηaηb (B.2)

+ η+a
(

DAya + ∂aP
bc(x)ηbyc + ∂aui

b(x)ηbc
i − ∂aµi(x)ψ

i
)

+
1

2
η+aη+b

(

1

2
∂a∂bP

cd(x)ycyd + ∂a∂bui
c(x)ycc

i + ∂a∂bµi(x)C
i

)

− ui
a(x)yab

+i − µi(x)B
+i + x+

a

(

P ab(x)yb + ui
a(x)ci

)

− y+a

(

1

2
∂aP

bc(x)ybyc + ∂aui
b(x)ybc

i + ∂aµi(x)C
i

)]

,

where SW is given by (A.2) and

DAx
a = dxa − ui

a(x)Ai, (B.3a)

DAya = dya + ∂aui
b(x)Aiyb (B.3b)

are the gauge covariant derivatives of x and y, respectively. Recall that the various fields

are local forms on Σ obtained from the corresponding components of the superfields by

the formal replacement ϑα → dzα and that wedge multiplication of forms is understood

throughout. The main properties of the gauge covariant derivatives are collected in ap-

pendix C.

The Poisson-Weil sigma model BV variations (cf. eq. (4.7)) of the component fields are

given by

δPWc
i = δW ci, (B.4a)

δPWA
i = δWAi, (B.4b)

δPWb
+i = δW b+i, (B.4c)
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δPWbi = δW bi − ui
a(x)ya, (B.4d)

δPWA
+

i = δWA+
i − ∂aui

b(x)η+ayb − ui
a(x)ηa, (B.4e)

δPWc
+

i = δW c+i − ∂aui
b(x)η+aηb − ui

a(x)x+
a (B.4f)

−
1

2
∂a∂bui

c(x)η+aη+byc + ∂aui
b(x)y+ayb,

δPWC
i = δWCi, (B.4g)

δPWψ
i = δWψi, (B.4h)

δPWB
+i = δWB+i, (B.4i)

δPWBi = δWBi − µi(x), (B.4j)

δPWψ
+

i = δWψ+
i − ∂aµi(x)η

+a, (B.4k)

δPWC
+

i = δWC+
i −

1

2
∂a∂bµi(x)η

+aη+b + ∂aµi(x)y
+a, (B.4l)

δPWx
a = P ab(x)yb + ui

a(x)ci, (B.4m)

δPWη
+a = DAx

a + ∂cP
ab(x)η+cyb + ∂bui

a(x)η+bci + P ab(x)ηb, (B.4n)

δPWy
+a = −DAη

+a − ∂cP
ab(x)η+cηb (B.4o)

−
1

2
∂c∂dP

ab(x)η+cη+dyb −
1

2
∂b∂cui

a(x)η+bη+cci

− P ab(x)x+
b + ∂cP

ab(x)y+cyb + ∂bui
a(x)y+bci + ui

a(x)b+i,

δPWya =
1

2
∂aP

bc(x)ybyc + ∂aui
b(x)ybc

i + ∂aµi(x)C
i, (B.4p)

δPWηa = DAya +
1

2
∂a∂dP

bc(x)η+dybyc + ∂aP
bc(x)ηbyc (B.4q)

+ ∂a∂cui
b(x)η+cybc

i + ∂aui
b(x)ηbc

i

− ∂aµi(x)ψ
i + ∂a∂bµi(x)η

+bCi,

δPWx
+

a = DAηa +
1

2
∂aP

bc(x)ηbηc − ∂a∂cui
b(x)η+cybA

i (B.4r)

+ ∂a∂cui
b(x)η+cηbc

i + ∂a∂dP
bc(x)η+dηbyc

+
1

4
∂a∂d∂eP

bc(x)η+dη+eybyc +
1

2
∂a∂c∂dui

b(x)η+cη+dybc
i

+ ∂aP
bc(x)x+

byc + ∂aui
b(x)x+

bc
i −

1

2
∂a∂dP

bc(x)y+dybyc

− ∂a∂cui
b(x)y+cybc

i − ∂aui
b(x)ybb

+i − ∂a∂bµi(x)η
+bψi

+
1

2
∂a∂b∂cµi(x)η

+bη+cCi − ∂a∂bµi(x)y
+bCi − ∂aµi(x)B

+i,

where the Weil sigma model δW variations are given by (A.5) and

DAη
+a = dη+a − ∂bui

a(x)Aiη+b, (B.5a)

DAηa = dηa + ∂aui
b(x)Aiηb (B.5b)

are the gauge covariant derivatives of η+ and η, respectively.5

5Here, we are abusing our terminology. Strictly speaking, DAη, as defined above, is gauge covariant only

when y vanishes. See again appendix C.
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C. G and general covariance

The covariance of the fields of the sigma models studied in the main body of the paper is

rather intricate. The embedding field is not simply a map x : Σ → M , as in the ordinary

ungauged sigma models, but a section of the bundle EM = Q ×G M , whose definition

combines in a non trivial manner the principal G-bundle Q on Σ and the manifold M with

G-action. The other fields are sections of bundles which are (related to) pull-backs by x

of bundles on EM . The construction of suitable gauge and general covariant derivatives of

the fields is thus a subtle matter. For the sake of concreteness, it may be useful to write

down the covariance of these fields and their covariant derivatives in terms of the cocycles

representing the bundles, which they are sections of. This is done in the present appendix.

More material on this topic can be found for instance in [18 – 20, 50].

Let G be a connected Lie group. Let the manifold M carry a left G-action. The

fundamental vector field u of the G-action is defined by the relation

ga(m) = ma − ξiui
a(m) +O(ξ2), (C.1)

for g = exp(ξ) ∈ G with ξ ∈ g. u is G-equivariant, i.e. for g ∈ G,

∂bg
−1a ◦ gui

b ◦ g =
(

Adg
)

j
iuj

a. (C.2)

Let Q be a principal G-bundle on the closed surface Σ. Let {gAB(z)} be a G-valued

1-cocycle representing Q. Here, A, B, C . . . are local trivialization indices. The 1-cocycle

condition

gAB(z)gBC (z) = gAC(z), (C.3)

when defined, holds.

Let EM be the fiber bundle on Σ represented by the non linear cocycle {gAB
a(z,mB)}

obtained from the G-valued 1-cocycle {gAB(z)} representing Q via the G-action on M . A

section x ∈ Γ(Σ, EM ) is given locally as a collection of maps {xA(z)} into M matching as

xA
a(z) = gAB

a(z, xB(z)). (C.4)

Let x ∈ Γ(Σ, EM ). Let x∗VertTEM be the vector bundle on Σ represented

by the 1-cocycle {CAB
a
b(z)}, where CAB

a
b(z) = ∂bgAB

a(z, xB(z)). A section v ∈

Ω0(Σ, x∗Vert TEM) is given locally as a collection of TM -valued functions {vA
a(z)} match-

ing as

vA
a(z) = ∂bgAB

a(z, xB(z))vB
b(z). (C.5)

In similar fashion, let x∗Vert∗TEM be the vector bundle on Σ represented by the 1-cocycle

{C∗
ABa

b(z)}, where C∗
ABa

b(z) = ∂agBA
b(z, xA(z)). A section s ∈ Ω0(Σ, x∗Vert∗TEM ) is

given locally as a collection of T ∗M -valued functions {sAa(z)} matching as

sAa(z) = ∂agBA
b(z, xA(z))sBb(z). (C.6)

We want to construct gauge covariant derivatives for sections of the bundles EM ,

x∗VertTEM , x∗Vert∗TEM . To this end, one needs a connection of Q. Recall that a

connection A of Q is given locally as a collection of g-valued 1-forms {AA
i(z)} matching as

AA
i(z) =

(

AdgAB(z)
)

i
jAB

j(z) +
(

gAB(z)dgAB(z)−1
)

i, (C.7)
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where here and below d denote the de Rham differential of Σ.

The following relation

dgAB
a(z,mB) =

(

gAB(z)dgAB(z)−1
)

iui
a(gAB(z,mB)) (C.8)

plays a basic role in the following analysis of covariance.

For x ∈ Γ(Σ, EM ), define

DAx
a = dxa − ui

a(x)Ai. (C.9)

Using (C.7), (C.8), one finds that

(DAx)A
a(z) = ∂bgAB

a(z, xB(z))(DAx)B
b(z). (C.10)

This shows that DAx ∈ Ω1(Σ, x∗VertTEM ). In this sense, DAx is the gauge covariant

derivative of x.

Let x ∈ Γ(Σ, EM ). For v ∈ Ω0(Σ, x∗VertTEM ), define

DAv
a = dva − ∂bui

a(x)Aivb. (C.11)

Then, using (C.7), (C.8), one finds

(DAv)A
a(z) = ∂bgAB

a(z, xB(z))(DAv)B
b(z) (C.12)

+ ∂b∂cgAB
a(z, xB(z))(DAx)B

b(z)vB
c(z).

Similarly, for s ∈ Ω0(Σ, x∗Vert∗TEM ), define

DAsa = dsa + ∂aui
b(x)Aisb. (C.13)

Then, using (C.7), (C.8) again, one obtains

(DAs)Aa(z) = ∂agBA
b(z, xA(z))(DAs)Bb(z) (C.14)

+ ∂a∂bgBA
c(z, xA(z))(DAx)A

b(z)sBc(z).

Note that DAv 6∈ Ω1(Σ, x∗VertTEM ) because of the second term in the right hand side

of (C.12). However, notice that this term would be absent if M were a linear space and

the G-action on M were linear, that is if EM were a vector bundle. For this reason,

with an abuse of language, we call DAv the gauge covariant derivative of v. Similarly,

DAs 6∈ Ω1(Σ, x∗Vert∗TEM ) because of the second term in the right hand side of (C.14).

Again, with an abuse of language, we call DAs the gauge covariant derivative of s.

One can correct the lack of full covariance found above by using a G-invariant connec-

tion of M . Recall that a connection Γ of TM is said G-invariant, if, for any g ∈ G

Γa
bc = Γd

ef ◦ g∂dg
−1a ◦ g∂bg

e∂cg
f + ∂dg

−1a ◦ g∂b∂cg
d. (C.15)

The Levi-Civita connection associated to a G-invariant Riemannian metric is G-invariant.
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For a section v ∈ Ω0(Σ, x∗VertTEM ), we define

D∇Av
a = DAv

a + Γa
bc(x)DAx

bvc. (C.16)

Then, under a change of local trivialization

(D∇Av)A
a(z) = ∂bgAB

a(z, xB(z))(D∇Av)B
b(z). (C.17)

Thus, D∇Av ∈ Ω1(Σ, x∗VertTEM ) and D∇Av is a genuine covariant derivative. Similarly,

for a section s ∈ Ω0(Σ, x∗Vert∗TEM ), we define

D∇Asa = DAsa − Γc
ba(x)DAx

bsc. (C.18)

Then, under a change of local trivialization

(D∇As)Aa(z) = ∂agBA
b(z, xA(z))(D∇As)Bb(z). (C.19)

Thus, D∇As ∈ Ω1(Σ, x∗Vert∗TEM ) and D∇As is a genuine covariant derivative.
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